Нужна помощь с двумя задачками. Через точку О пересечения диагоналей квадрата ABCD проведена прямая ОК, перпендикулярна плоскости квадрата, точка F

Нужна помощь с двумя задачками.

 

1. Через точку О пересечения диагоналей квадрата ABCD проведена прямая ОК, перпендикулярна плоскости квадрата, точка F - середина отрезка DC. Вычислите градусную меру угла между прямой FK и плоскостью AKC, если ОК = 2 см, АD = 4 см.

 

2. ABCDA1B1C1D1 - куб, точки Е и К - середины ребер АD и DС соответственно.

Постройте сечение куба плоскостью, проходящей через прямую КЕ и перпендикулярной плоскости АDС1. Вычислите периметр этого сечения, если длина ребра куба равна 2 см.

 

Решение распишите как можно подробнее. Спасибо.

  • 1))) построим проекцию прямой FK на плоскость AKC: из F опустим перпендикуляр FH на AC

    искомый угол ---угол HKF

    найдем FH: треугольник FHC прямоугольный, угол HCF = 45 град., FC=2 => HF = FC*sin45 = 2*корень(2)/2 = корень(2)

    найдем КF: треугольник ОКF прямоугольный, ОF=2 => КF = корень(4+4) = 2*корень(2)

    sin(HKF) = HF/KF = корень(2) / 2*корень(2) = 1/2

    угол HKF = 30 град.

    2))) чтобы построить сечение, перпендикулярное ADC1, нужно провести перпендикуляр из K к  DC1 и продолжить его до пересечения с DD1 (H), получится треугольник EKH

    DK = DH, т.е. KH соединяет середины сторон квадрата DD1C1C, EK соединяет середины сторон квадрата, получившийся треугольник EKH равносторонний

    найдем EK: EK = корень(2)

    Периметр P = 3корень(2)

     

     

Комментарии 1

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *